MaF/yr

Climate, Growth and Drought Threat to Colorado River
Water Supply

Balaji Rajagopalan'?, Kenneth Nowak!, James Prairie3, Martin Hoerling®*, Benjamin Harding>, Joseph Barsugli#*, Andrea Ray* and Bradley Udall**

'Dept. of Civil Environmental and Architectural Engineering, University of Colorado at Boulder ?CIRES, University of Colorado at Boulder Bureau of Reclamation “NOAA ESRL SAMEC Earth & Environmental

l. Introduction ll. Model Development and Data lll. Results and Conclusions

Abstract Model Policy and Growth Alternatives
Risk of drying with natural variability alone E_Risk of drying with 10% flow reduction
With climate change looming, continued population growth, and the recurrence of multi-year = Simple water balance model: A. The interim shortage policies (Interior, Altermative A
droughts, the future reliability of Colorado River water supply is in question. We assess the risk ) 2007) employed with full demand growth pl - ernative 4
8 : v PPy 5 . . Change in Storage = Inflow — Outflow ) employ : o —Alternative B o
to Colorado River water supply for the next 50 years (2008-2057). Under current practices, and in B. Same as A, but with larger delivery - — Alternative C -
the assumed absence of climate change, we find a 5% risk of reservoir depletion through 2026 " Inflow is the sum of flow at Lees Ferry, AZ shortages (“Interim Plus”) . O Alternative D . O
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However, we find management alternatives can greatly reduce risk — under aggressive £ D. Same as C, but with full initial storage - oo~
management the risk reduces to 32%. A lower rate of climate change induced flow reduction, = Qutflow includes the deliveries to Upper _ i - -
demand adaptation and aggressive management can further reduce the risk to around 10% - and Lower Basins, Mexico, transmission E. Same as C, but with new threshold policy o o
suggesting substantial flexibility in existing management could mitigate the increased risk. losses in the Lower Basin and reservoir ESAE o R — o o
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. . = Ensemble of 10,000 fifty-year streamflow calculated.
Motivation

sequences generated, capturing natural (1) Near-term risk of drying for all scenarios is relatively low, however after 2026 risk increases

it v s = A deficit occ.urs any time the full glemand is dramatically.
= Recent drought most severe not met. This can be due to physical
b d y) K I f ith Di i Ri constraints (i.e., no water available) or (I1) Figures 11 and 12 show that combinations of aggressive shortage policy and slowed growth
observed event (2). Lake Powell at confluence with Dirty Devil River (USGS) shortage policy. can mitigate risk of drying by as much as 35% (for 20% flow reduction) and 66% (for 10%

: fl ion).
= Strain on Lakes Powell and ow reduction)

Mead storage (3).

. . . (Il1) More aggressive shortage policy (Alternative F) can reduce the median shortage volume,
Climate Change Projections wlifeh e e desiralle

Upper basin historic consumptive use and projected

depletions (IV) Modeling initial demand as reported consumptive use (Fig. 13) and according to the
depletion schedule (Fig. 12) provides an “envelope” within which the actual system state
M

w most likely falls.

Al f/ (V) The interim period of relatively low risk should be used to devise robust water management
e /v/ W 2 g that can reduce system risk post-2026.
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induced reductions in flow

(4). o o = Reduction ramps up from zero in 2008 to
their full value in 2057 (Fig. 7).

=  Assumed percentage reduction applied to
the stochastically generated flows.
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Growmg basin demand (5) = 0%, 10% and 20% reduction scenarios were

Recent studies project reductions Colorado River flow chosen to span the range of most current
id- st . .
n by mid-21st century (Ray, et al., 2008) studies (Fig. 4)
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